منتدى مدرسة بنات جمال عبد الناصر
عزيزي الزائر / عزيزتي الزائرة يرجي التكرم بتسجيل الدخول إذا كنت عضو معنا
أو التسجيل إن لم تكن عضو وترغب في الانضمام إلى أسرة المنتدى
سنتشرف بتسجيلك

مع اجمل التحيات
إدارة المنتدى

منتدى مدرسة بنات جمال عبد الناصر

معلومات عنك انت مسجل الدخول بأسم {زائر}. آخر زيارة لك . لديك0مشاركة.
 
الرئيسيةشريط اخر المواضاليوميةمكتبة الصورس .و .جبحـثالأعضاءالمجموعاتالتسجيلدخولتسجيل دخول الاعضاء

شاطر | 
 

 المنحنى الطبيعي المعياري

اذهب الى الأسفل 
كاتب الموضوعرسالة
سارة أبو التين
عضو جديد
عضو جديد


عدد المساهمات : 1
نقاط : 3
تاريخ التسجيل : 04/01/2012
العمر : 23

مُساهمةموضوع: المنحنى الطبيعي المعياري   الأربعاء يناير 04, 2012 11:38 pm



توزيع متصل له شكل الناقوس.
*

تتساوى فيه مقاييس النزعة المركزية الوسط والوسيط والمنوال.
*

متماثل حول وسطه (صفر).
*

الانحراف المعياري له يساوي الواحد الصحيح.
*

طرفاه يمتدان إلى مالا نهاية دون أن يلتقيا المحور الأفقي.
*

المساحة أسفله وفوق المحور الأفقي تساوي الواحد الصحيح.
*

معياري بمعنى أنه يمكن مقارنة أشياء مختلفة.
*

الالتواء و التفلطح صفر.
*

يحمل نسب متساوية وثابتة من الوسط فجهة اليمين (يمين الوسط) موجبه ويسارها سالبه.





مثال(2) مثال(3) مثال(4) مثال(5) مثال(6) مثال(7) مثال(Cool مثال(9) مثال(10)

مثال(1):

احسب المساحة المحصورة بين i– 2.14 , 1.54والواقعة تحت منحنى التوزيع الطبيعي والمبينة بالشكل المرفق.

الحـل:

نعلم أن العدد i1.54يقابله في جدول Z قيمة المساحة الواقعة يساره وكذلك العدد i– 2.14 تقابله مساحة في جدول Z والفرق بين المساحتين يعطينا المساحة المطلوبة.

مع ملاحظة حسابنا للقيمة السالبة بموجبها مطروح من الواحد الصحيح.
العدد المساحة
1.54 0.9382
– 2.14 1 – 0.9838 = 0.0162



المساحة المطلوبة = i0.9382 – 0.0162

= i0.9220

أو بجمع القيم الجدولية للقيمتين مباشرة بحذف 0.5 من قيمها الجدولية أي

المساحة المطلوبة = i0.4382 + 0.4838

= i0.9220

تنويه: جدول z يقرأ المساحة على يسار العدد وعليه نقول

المساحة على يمين العدد 1.54 = 1 – 0.9832 = 0.0168

المساحة على يمين العدد صفر هي 0.5

مثال(2):

احسب المساحة بين Z = – 1.5 , Z = – 0.43

الحـل:

المساحة المطلوبة = المساحة على يسار –0.43 مطروحاً منها المساحة على يسار –1.5

= (1 – 0.6664) – (1 – 0.9332)

= 0.3336 – 0.0668

= 0.2668

أو

P(– 0.43 > Z > – 1.5)= [1– P(Z < 0.43)] – [1 – P(Z < 1.5)]

= (1 – 0.6664) – (1 – 0.9332)

= 0.3336 – 0.0668

= 0.2668

مثال(3):

احسب المساحة بين Z = 1.5 , Z = 0.43

الحـل:

المساحة المطلوبة = المساحة على يسار1.5 مطروحاً منها المساحة على يسار0.43

= 0.9332 – 0.6664

= 0.2668

أو

P( 0.43 < Z < 1.5)= P(Z < 1.5) – P(Z < 0.43)

= 0.9332 – 0.6664

= 0.2668





مثال(4):

إذا كانت مجموعة مكونة من 400 عضو في نادي تتوزع توزيعاً طبيعياً في العمر بمعدل 40 سنة بانحراف معياري قدره 5 فاحسب:

1) عدد الأعضاء الذين أعمارهم بين 35 إلى 45 سنة.

2) عدد الأعضاء الذين أعمارهم أقل من 50

3) عدد الأعضاء الذين أعمارهم أقل من 35 واكبر من 45

الحـل:

1) نحسب قيمة Z من القانون للعمر 35:

Z = ( X – μ ) ÷ σ = ( 35 – 40) ÷ 5 = – 1

القيمة الجدولية المقابلة للعدد – 1 (المساحة ) هي 1– 0.8413 = 0.1587

" لاحظ عدد الأعضاء هنا = 0.1587 × 400 ≈ 64 "


" لاحظ أن العدد 0.1587 هو احتمال عمر العضو أقل من 35 سنة "

" لاحظ مساحة المنطقة الصفراء A = 0.5 – 0.1587 = 0.3413 "

نحسب قيمة Z من القانون للعمر 45:

Z = ( X – μ ) ÷ σ = ( 45 – 40) ÷ 5 = 1

القيمة الجدولية المقابلة للعدد 1(المساحة ) هي 0.8413

ويمكن حسابها من –1 السابقة وهي 1 – 0.1587 = 0.8413

" لاحظ عدد الأعضاء هنا = 0.8413 × 400 ≈ 337 "

" لاحظ أن العدد 0.8413 هو احتمال عمر العضو أقل من 45 سنة "



" لاحظ مساحة المنطقة الصفراء B = 0.8413 – 0.5 = 0.3413 "

الفرق بين المساحتين = 0.8413 – 0.1587 = 0.6826 أو مجموعهم كما مبين بالشكل

المطلوب = 0.6826 × 400 ≈ 273 عضو

" من الملاحظتين أعلاه عدد الأعضاء = 337 – 64 = 273 "



2) نحسب قيمة Z من القانون للعمر 50:



Z = ( X – μ ) ÷ σ = ( 50 – 40) ÷ 5 = 2



القيمة الجدولية المقابلة للعدد 2 ( المساحة) هي 0.9772على يسار القيمة 2



فيكون عدد الذين تقل أعمارهم عن 50 = 0.9772 × 400 ≈ 381 عضو



لاحظ:

الذين يزيد أعمارهم عن 50 = (1 – 0.9772) × 400 = 0.0228 × 400 ≈ 9





3) الأعضاء الذين أعمارهم أقل من 35 واكبر من 45 هم خارج الفترة العمرية للمطلوب 1)



والمبينة بالشكل المقابل باللون الأزرق وهي تمثل 1 مطروحاً منه المساحة 0.6826 أي:



المساحة = 1– 0.6826



= 0.3174



عدد الأعضاء = 0.3174 × 400



≈ 127

وتمثلهم المساحة المبينة باللون الأزرق ـ أنظر الشكل المقابل ـ



مثال(5):

احسب قيمة العلامة الزائية للمئين 85

الحـل:

المئين 85 تمثله 0.85 من المساحة تحت منحى التوزيع الطبيعي

من جدول Z نبحث في عمود المساحة عن القيمة 0.8500 فنجد القيمة 0.8504 وهي أقرب إلى 0.8500 من 0.8485 يقابلها في عمود Z القيمة 1.04



لاحظ:

للحصول على Z من الجدول يجب معرفة قيمة النسبة (المساحة تحت المنحنى الطبيعي) سواء كان لجزء من المائة (المئين) أو لنسبة مئوية 15% مثلاً سواء كانت أكثر أو أقل أو يساوي وبالتالي نبحث في جدول Z عن الكسر العشري 0.15 مثلاً ومنها نعرف قيمة Z من الجدول مباشرة للمفهوم يساوي أو أقل من، ولكن حال ذكر أكبر من 15% أي على يمين العدد وجدول Z يعطي قيم المساحة على يسار العدد (أقل من) فنبحث عن 85% التي تمثل يسار Z أو أقل من 85% المقابلة إلى 100% – 15% = 85%

مثال(6):

ما العلامة التائية للعلامة الزائية للعلامة 75 وكذلك احسب العلامة الزائية للعلامة التائية 800

الحـل:

العلاقة الرياضية التي تربط العلامتان الزائية والتائية هي:

T = 10Z + 50 → (1)

يمكن صياغتها بالصورة الآتية:

Z = (T – 50) ÷ 10 → (2)

بالتعويض في (1) عن 75

T = 10Z + 50 → (1)

= 10×75 + 50

= 800

نعوض في (2) عن 800

Z = (T – 50) ÷ 10 → (2)

= (800 – 50) ÷ 10

= 750 ÷10

= 75

لاحظ: في حالة إعطاء علامات زائية وتائية وطَُلب ترتيبها فيجب تحويل الزائية إلى تائية أو العكس

2) هناك علامة معيارية أخرى تعرف بدرجة SATت(Scholastic Aptitude Test) بوسط حسابي i500 وانحراف معياري i100حيث:

SAT = 100Z + 500

مثال(7):

متوسط بيانات مجتمع 85 وانحرافه المعياري 20 فما قيمة الدرجة التائية التي تقابل العلامة 140.

الحـل:

العلاقة الرياضة المطلوبة لحساب Z هي:

Z = (X – μ) ÷ σ

= (140 – 85) ÷ 20

= 55 ÷ 20

= 2.75

نحول العلامة Z إلى علامة تائية من العلاقة الرياضية:

T = 10Z + 50

= 10×2.75 + 50

= 77.5

لاحظ : في حالة عدم معرفة الانحراف المعياري والوسط نعتمد الوسيط والمدى لحساب Z من العلاقة الرياضية:

الدرجة المعيارية Z = (الدرجة الخام – الوسيط) ÷ المدى الربيعي

مثال(Cool:

اختير طالب عشوائياً من مجتمع نسبة ذكاء أفراده تتبع توزيع طبيعي وبمتوسط حسابي 80 وانحراف معياري 10 فأوجد:

1) احتمال أن تقل نسبة ذكاء الطالب المختار عن 90

2) احتمال أن تزيد نسبة ذكاء الطالب المختار عن 105

3) احتمال أن تتراوح نسبة ذكائه بين 90 ، 105

4) وضح ذلك بيانياً (المساحة تحت منحنى التوزيع الطبيعي).

الحـل:

1) نحسب العلامة المعيارية (Z ) التي تقابل القيمة 90

Z = (X – μ) ÷ σ

= (90 – 80) ÷ 10

= 1

من جدول Z نجد أن المساحة المقابلة = 0.8413 وهو الاحتمال المطلوب

2) نحسب العلامة المعيارية (Z ) التي تقابل القيمة 105

Z = (X – μ) ÷ σ

= (105 – 80) ÷ 10

= 2.5

من جدول Z نجد أن المساحة المقابلة = 0.9938

وحيث المطلوب أن تزيد نسبة الذكاء فيكون الاحتمال المطلوب = 1 – 0.9938 = 0.0062

3) الاحتمال المطلوب = احتمال أقل من 105 مطروحاً منه احتمال أقل من 90 أي:

P( 90 < X < 105 ) = P( X < 105 ) – P( X < 90 )

= P( Z < 2.5 ) – P( Z < 1 )

= 0.9938 – 0.8413

= 0.1525

4) مبين بالشكل، لاحظ مجموع الاحتمالات الثلاثة يساوي الواحد الصحيح.

مثال(9):

رتب العلامات التالية ترتيباً تنازلياً:

علامة تائية i80 ، وعلامة زائية i3.2 ، ورتبة مئينية i70% ، وعلامة SATاi600

الحـل:

نحول العلامات إلى الزائية:

العلامة التائية 80 :

T = 10Z + 50

80 = 10Z + 50

Z = 3

الرتبة المئينية 70%:

من جدول Z أمام المساحة 0.7000 نجد:

Z = 0.85

علامة SATا4:

SAT = 100Z + 500

600 = 100Z + 500

Z = (600 – 500) ÷ 100

Z = 1

الترتيب:

i 0.85 , 1 , 3 , 3.2

مثال(10):

برهن على أنَّ مجموع مربعات العلامات الزائية لقيم مفردات مجتمع يساوي عدد هذه المفردات (n) وللعينة عدد مفرداتها مطروحاً منه الواحد الصحيح (n–1).


الحـل:

مجموع مربعات علامات زائية لقيم مفردات مجتمعي يساوي عدد المفردات

بالنسبة للمجتمع يكون المجموع يساوي n وللعينة n –1 وهنا برهان ذلك للمجتمع وللعينة نكتفي باستبدال n بـ n –1

لتكن لدينا مجموعة من القيم:

Xi , i = 1, 2, 3, ..., n

وسطها الحسابي يحتسب من العلاقة الرياضية:

∑Xi

`X = ——

n

مجموع فروق القيم عن وسطها = صفر

∑(Xi –`X ) = 0

التباين S2 يحسب من العلاقة الرياضية التالية:

∑(Xi –`X )2

S2 = ————— → (1)

n



الانحراف المعياري σ يساوي الجذر ألتربيعي للتباين

نحسب قيمة العلامة الزائية من العلاقة الرياضية:



(Xi –`X )

Z = —————

S





نربع طرفي المعادلة السابقة فنحصل على:



(Xi –`X )2

Z2 = —————

S2



نجمع طرفي المعادلة:



∑(Xi –`X )2

∑Z2 = ——————

S2



نعوض عن قيمة S2 من (1)

∑(Xi –`X )2

∑Z2 = —————— × n

∑(Xi –`X )2

= n

فمثلاً : مجموع مربعات 6 علامات زائية هو 6 للمجتمع ، 5 للعينة

لاحظ أنَّ: مجموع العلامات الزائية لقيم مفردات مجتمع (أو عينة) يساوي صفر


















* تعريف .... التوزيع الاحصائي الطبيعي
هو أحد صور التوزيعات التكرارية ويمتاز بأنه متماثل حول الوسط الحسابي ويأخذ المنحنى المرسوم منه شكل الجرس.
ــــــــــــــــــــــــــــــــــــــــــــــــــ ــــــ
*امثله....
ا لأطوال ، الاوزان, الحجوم , الزمن , المسافات, درجات الحرارة الأسعار , معدلات الذكاء.
ــــــــــــــــــــــــــــــــــــــــــــــــــ ــــــــ
*اهميته....
دراسة وتحليل الظواهر الاحصائية المختلفة وعلى الخصوص في ايجاد احتمال تحقق أي حادثة كما أنه هام جدا في النواحي الاقتصادية ونواحي إدارة الأعمال.
ــــــــــــــــــــــــــــــــــــــــــــــــــ ــــــــــــ
*خواصه....
1- شكله يشبه الجرس متماثل حول الوسط الحسابي.

2- قيم س الممكنه هي - ∞ إلى ∞

3- تتساوى قيمة الوسط الحسابي مع الوسيط مع المنوال

4- يمتد طرفاه إلى ما لا نهايه ولا يمس المحور السيني ولا يقطعه أبدا

5- يتحدد شكل المنحنى بمعرفة تماما بمعرفة الوسط الحسابي والانحراف المعياري.

6- إن جملة المساحة تحت المنحنى الطبيعي تساوي واحدا صحيحا إذا تم النظر إليها من وجهة نظر مجموع التكرارات النسبية. حيث على يمين و نصف المساحة وعلىيساره النصف الثاني.
ــــــــــــــــــــــــــــــــــــــــــــــــــ ــ
ملاحظة:

1- المقصود بالتكرار النسبي للفئة : هو تكرار الفئة مقسوما على مجموع التكرارات والجواب مضروب في 100 والجدير بالذكر أن مجموع التكرارات النسبية لجدول تكراري يساوي 100 % أي واحد صحيح.



ــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــ
أ‌- إذا تغير الوسط الحسابي وبقي

الانحراف المعياري ثابتا فإن

مننحنى التوزيع يتغير يمينا أو

يسارا ولكن شكل التوزيع لا

يتغير.

- إذا تغير الانحراف المعياري

وبقي الوسط الحسابي ثابتا فإن

تشتت وتباعد المنحنى حول المركز

يقل كلما صغرت قيمة ع ويزيد

كلما كبرت

ج- إذا تغيرت قمة كلا من ع

والوسط الحسابي و

فإن مركز التوزيع يتغير

وتباعد منحناه حول المركز

يتغير كذلك.

الحالة الأولى: الحالة القياسية (الجدولية)

كيفية تعيين المساحة الواقعة

يسار قيم ز الموجبة

الجواب: بغايةالسهولة وهو

نستخرج المساحة من الجدول مباشرة



مثال:

إذا كان ز متغيرا طبيعيا معياريا فأوجد ما يلي:

1- ل ( ز< 5 ‚1)

2- ل ( ز< 3 )

الحل:

1- من الجدول مباشرة ل ( ز< 5 ‚1) = 9332 ‚

2- من الجدول مباشرة ل ( ز< 3 ) = 9987 ‚





الحالة الثانية: المساحة الواقعة يمين قيم ز الموجبة

س:كيف نعين المساحة الواقعة

يمين قيم ز الموجبة؟؟؟



الجواب:

في هذه الحالة لا نستطيع حساب المساحة الواقعة يمين قيم ز الموجبة من الجدول مباشرة ولكن نستخدم القاعدة التالية:

المساحة يمين قيمة ز الموجبة = 1- المساحة يسار قيمة ز الموجبة.

ــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــ
مثال:

إذ1 كان ز متغير طبيعي معياري فأوجد ما يلي:

1- ل ( ز > 5‚1)

2- ل ( ز < 3 )

الحل:

1- أولا نرسم رسم كروكي لتحديد المساحة المطلوبة

ل ( ز > 5‚1) = ا- المساحة يسار ز= 5‚1

= 1- 9332 ‚ = 8 660 ‚





2- نرسم رسم كروكي للشكل لتحديد المساحة المطلوبة

ل ( ز < 3 ) = ا – المساحة يسار ز = 3

= ا- 9987 ‚ = 0013 ‚





الحالة الثالثة: 9987 ‚المساحة الواقعة يسار قيم ز السالبة



س: كيف نحسب المساحة الواقعة يسار قيم ز السالبة



الجواب:

المساحة يسار قيمة ز السالبة = المساحة يمين قيمة ز الموجبة

= ا- المساحة يسار قيمة ز الموجبة

مثال: إذا كان ز متغيرا طبيعيا معياريا فأوجد ما يلي:

1- ل ( ز<- 5 ‚1)

2- ل ( ز< - 3 )



الحل:

1- ل ( ز<- 5 ‚1) = ا- المساحة يسار ز= 5‚1

= 1- 9332 ‚ = 8 660 ‚

2- ل ( ز< - 3 ) = ا – المساحة يسار ز = 3

= ا- 9987 ‚ = 0013 ‚

الحالة الرابعة: المساحة يمين قيم ز السالبة

س: كيف نحسب المساحة يمين قيم ز السالبة؟؟

الجواب:

المساحة يمين قيمة ز السالبة= المساحة يسار قيمة ز الموجبة

تستخرج من الجدول مباشرة



مثال:

إذا كان ز متغيرا طبيعيا معياريا فأوجد ما يلي:



1- ل ( ز >- 5 ‚1)

2- ل ( ز > - 3 )

الحل:

1- من الجدول مباشرة ل ( ز>- 5 ‚1) = 9332 ‚

2- من الجدول مباشرة ل ( ز> - 3 ) = 9987 ‚





ملاحظة هامة:

· طريقة إيجاد المساحة يسار قيمة ز الموجبة هي نفسها طريقة إيجاد المساحة الواقعة يمين قيمة ز السالبة

وهي في الحالتين (تستخرج المساحة المناظرة لقيمة ز الموجبة من الجدول مباشرة)



· طريقة إيجاد المساحة يمين قيمة ز الموجبة هي نفسها طريقة إيجاد المساحة الواقعة يسار قيمة ز السالبة



وهي في الحالتين:

(1- المساحة يسار قيمة ز الموجبة)




الحالة الخامسة :المساحة المحصورة بين قيمتي زسواء

قيمتين موجبتين , قيمتين سالبتين , قيمة موجبة وأخرى سالبة

في كل من الحالات السابقة :

المساحة المطلوبة = المساحة يسار قيمة ز1 - المساحة يسار قيمة ز 2





مثال: إذا كان ز متغيرا طبيعيا معياريا فأوجد ما يلي:

1- ل (1 < ز < 2 )

2- ل (-2< ز < -3 )

3- ل(- 5 ‚2 < ز < 5 ‚1)



الحل:

1- ل (1 < ز < 2 )

= المساحة يسار ز=2 – المساحة يسار ز= 1

=9772 ‚ - 8413 ‚ = 1359,





2- ل (-2< ز < -3 ) =

المساحة يسار ز= -3 – المساحة يسار ز=-2

المساحة يسار ز= -3

=1 – المساحة يسار ز=3

=1- 9987 ‚ =0013 ‚

المساحة يسار ز=-2

= 1- المساحة يسار ز=2

= 1- 9772 ‚ = 0228 ‚



إذن ل (-2< ز < -3 ) = 0228 ‚ - 0013 ‚

=0215 ‚

3- ل (- 5 ‚2 < ز < 5 ‚1)

= المساحة يسار ز= 5 ‚1 – المساحة يسار ز= - 5 ‚2

المساحة يسار ز= 5 ‚1 = 9332 ‚ من الجدول مباشرة

المساحة يسار ز= - 5 ‚2

= 1- المساحة يسار ز= 5 ‚2

= 1- 9938 ‚ =0062 ‚



إذن ل (- 5 ‚2 < ز < 5 ‚1) = 9332 ‚ - 0062 ‚

= 9270 ‚



تصفح المزيد: http://www.sef.ps/vb/multka231886/#ixzz1iVZkmgOF
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو
 
المنحنى الطبيعي المعياري
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى مدرسة بنات جمال عبد الناصر :: الرياضيات :: مشروع المنحنى الطبيعي المعتدل-
انتقل الى: