منتدى مدرسة بنات جمال عبد الناصر
عزيزي الزائر / عزيزتي الزائرة يرجي التكرم بتسجيل الدخول إذا كنت عضو معنا
أو التسجيل إن لم تكن عضو وترغب في الانضمام إلى أسرة المنتدى
سنتشرف بتسجيلك

مع اجمل التحيات
إدارة المنتدى

منتدى مدرسة بنات جمال عبد الناصر

معلومات عنك انت مسجل الدخول بأسم {زائر}. آخر زيارة لك . لديك0مشاركة.
 
الرئيسيةشريط اخر المواضاليوميةمكتبة الصورس .و .جبحـثالأعضاءالمجموعاتالتسجيلدخولتسجيل دخول الاعضاء

شاطر | 
 

 الأحداث Events

اذهب الى الأسفل 
كاتب الموضوعرسالة
wala'a Abu dayh
عضو جديد
عضو جديد


عدد المساهمات : 5
نقاط : 15
تاريخ التسجيل : 18/12/2011
العمر : 22

مُساهمةموضوع: الأحداث Events    الجمعة ديسمبر 23, 2011 3:41 am

الأحداث Events :
الحدث هو مجموعة جزئية من فضاء العينة وعدد الأحداث تخضع للصيغة 2ن حيث ن عدد عناصر فضاء العينة واحتمال وقوع الحدث A هو نسبة عدد حالات وقوعه بالفعل بالنسبة لكل الحالات الممكنة لوقوعه أي أن: P(A) = M ÷ N حيث M عدد حالات وقوع A بالفعل ، N عدد الحالات الممكنة فاحتمال ظهور عدد فردي عند إلقاء حجر النرد مرة واحدة هو 0.5 لأن الأعداد الفردية ثلاثة (1، 3، 5) والتي تحقق المطلوب (عدد فردي) وكل الأعداد ستة (1، 2، 3، 4، 5، 6) فالاحتمال 3 ÷ 6 = 0.5 ، الشكل المقابل لحجر النرد أو الزار أو الزهرة

الحدث البسيط ( Simple event ): وهو الحدث المكون من عنصر واحد مثل {1} في تجربة إلقاء حجر النرد.
الحدث المركب ( Compound event ): الحدث المكون من أكثر من عنصر مثل {2، 4، 6} حدث العدد زوجي في تجربة إلقاء حجر النرد.
الحدث المستحيل: الحدث الذي لا يحوي أي عنصر كحدث ظهور العدد 7 في تجربة إلقاء حجر النرد.
الحدث المؤكد: الحدث الذي يضم كافة عناصر الفضاء كحدث ظهور عدد أقل من 7 في تجربة إلقاء حجر النرد.
الحدثان المتنافيان ( Mutually Exclusive events ): الحدثان اللذان لا يشتركا في أي عنصر وتقاطعهم المجموعة الخالية أي A ∩ B = f مثل {2}، {3}، وتعرف بالأحداث غير المتصلة.
الأحداث المنتظمة (dependent events): المتساوية في احتمالاتها. ففي تجربة إلقاء حجر النرد مرة واحدة يكون: P(1) =P(2) = P(3) =P(4) = P(5) = P(6) = 1:6
الأحداث الشاملة ( Exhaustive events ): إذا كان S فضاء عينة ما فإن الأحداث A, B, C شاملة إذا تحقق الشروط الثلاثة الآتية:
1) متنافية فيما بينها أي: A ∩ B = f و A ∩ C = f و C ∩ B = f
2) أياً منها ليست خالية أي A ≠ f و B ≠ f و C ≠ f
3) إتحادها يساوي S أي A È B È C = S
الأحداث المكملة (Complementary events): الحدثان اللذان اتحادهم يساوي فضاء العينة بمعنى Aحدث فإن A`الحدث المكمل حيث A È`A = S
الحدثان المستقلان ( Independent events ): اللذان لا يتأثر أي منهم بالآخر (وقع أحدهم لا يؤثر أو يتأثر بوقوع أو عدم وقوع الآخر).
P(A ∩ B) = P(B) × P(A) قاعدة الضرب للاحتمالات للإحداث المستقلة
يمكن تعميم هذه القاعدة لأكثر من حدثين
P(A ∩ B ∩ C ∩ ... ∩ Z) = P(A) × P(B) × P(C)×... × P(Z)
الأحداث الغير مستقلة (المشروطة) Conditional Probability:
حدثان وقوع أحدهما يؤثر في وقوع الآخر مثل سحب ورقة من أوراق اللعب دون إرجاع مما يؤدي لتأثير سحب ورقة جديدة لنقص الفرصة بنقص عدد الأوراق (52 إلى 51)
فالحدثان A, B نكتب حدث وقوع A بشرط وقوع B بالصورة A / B ويكون:

P(A ∩ B)
P(A / B) = ـــــــــــــــــــــــــ , P(B) ¹ 0
P(B)

OR
P(A ∩ B) = P(B) × P(A / B)
لاحظ أن العلامة / ليست علامة القسمة بل علامة شرط وقوع ما يليها من أحداث
P(A / B)s وهو احتمال وقوع الحدث A بشرط وقوع الحدث B ، قد ترد عبارة أخرى تفيد الشرط كالقول علماً بأن ...
وفي حالة الحدثان مستقلان أي لا يؤثر وقوع أحدهما على الآخر ( when A and B are independent events ) يصبح القانون:
P(A ∩ B) = P(B) × P(A)

مثال: صندوق يحوي 14 كرة منها 8 حمراء ، 6 زرقاء سحبت كرتان (عشوائياً) من الصندوق الواحدة وراء الأخرى دون إرجاع ( أو سحب كرتان معاً ) أحسب احتمال أن تكون الكرتان حمراء وزرقاء (الأولى زرقاء والثانية حمراء). (أنظر الشكل).
الحل:
ليكن A = حدث سحب كرة حمراء اللون
وليكن B = حدث سحب كرة زرقاء اللون
فالمطلوب هوP(A / B)s حيث A السحبة الثانية ، B السحبة الأولى.
P(A ∩ B) = P(B) × P(A / B)

8 6 24
P(A ∩ B) = — × — = —— = 0.2637
14 13 91

لاحظ سحب كرتان نفس اللون = ل(ح ، ح) + ل(ز ، ز) = (8÷14)×(7÷13) + (6÷14)×(5÷13) = 0.4725
لاحظ سحب كرتان مختلفتان في اللون = ل(ح ،ز) + ل(ز ، ح) = 0.2637 + 0.2637 = 0.5274
لاحظ مجموع الاحتمالان السابقان 0.4725 + 0.5274 = 0.9999 ≈ 1
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو
 
الأحداث Events
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى مدرسة بنات جمال عبد الناصر :: الرياضيات :: مشروع االحوادث المستقلة-
انتقل الى: